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Progress in understanding the neural bases of cognitive control has been supported by the paradigmatic color-word Stroop task, in
which a target response (color name) must be selected over a more automatic, yet potentially incongruent, distractor response (word).
For this paradigm, models have postulated complementary coding schemes: dorsomedial frontal cortex (DMFC) is proposed to evalu-
ate the demand for control via incongruency-related coding, whereas dorsolateral PFC (DLPFC) is proposed to implement control via
goal and target-related coding. Yet, mapping these theorized schemes to measured neural activity within this task has been challeng-
ing. Here, we tested for these coding schemes relatively directly, by decomposing an event-related color-word Stroop task via represen-
tational similarity analysis. Three neural coding models were fit to the similarity structure of multivoxel patterns of human fMRI
activity, acquired from 65 healthy, young-adult males and females. Incongruency coding was predominant in DMFC, whereas both
target and incongruency coding were present with indistinguishable strength in DLPFC. In contrast, distractor information was
strongly encoded within early visual cortex. Further, these coding schemes were differentially related to behavior: individuals with
stronger DLPFC (and lateral posterior parietal cortex) target coding, but weaker DMFC incongruency coding, exhibited less behavioral
Stroop interference. These results highlight the utility of the representational similarity analysis framework for investigating neural
mechanisms of cognitive control and point to several promising directions to extend the Stroop paradigm.
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Significance Statement

How the human brain enables cognitive control — the ability to override behavioral habits to pursue internal goals — has
been a major focus of neuroscience research. This ability has been frequently investigated by using the Stroop color-word
naming task. With the Stroop as a test-bed, many theories have proposed specific neuroanatomical dissociations, in which
medial and lateral frontal brain regions underlie cognitive control by encoding distinct types of information. Yet providing a
direct confirmation of these claims has been challenging. Here, we demonstrate that representational similarity analysis,
which estimates and models the similarity structure of brain activity patterns, can successfully establish the hypothesized
functional dissociations within the Stroop task. Representational similarity analysis may provide a useful approach for investi-
gating cognitive control mechanisms.

Introduction
Goals, held in mind, can be used to overcome behavioral habits.
Understanding how the human brain enables such cognitive
control has been a fundamental interest of both basic and trans-
lational cognitive neuroscience. Toward this end, the use of
response conflict tasks has been instrumental (e.g., Botvinick et
al., 2001; Ridderinkhof et al., 2004). These tasks involve trials in
which a less-automatic, but goal-relevant course of action, the
target response, must be selected in the face of a habitual, but
goal-irrelevant alternative, the distractor. The paradigmatic
example is the color-word Stroop task (Stroop, 1935; Posner and
Snyder, 1975; MacLeod, 1991): on each trial, the hue of a word
must be named, despite the word expressing a potentially con-
flicting, that is, incongruent, color (see Fig. 1C). A major goal in
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this field has been to use measures of neural activity evoked by
response conflict tasks, such as Stroop, to test models of cognitive
control.

One broad, neurocomputational-level model ascribes particu-
lar roles to different frontoparietal regions in overcoming
response conflict (Miller and Cohen, 2001; Shenhav et al., 2013).
Central to this view is the type of task information these regions
encode. The dorsomedial frontal cortex (DMFC) is proposed to
“evaluate” demand for cognitive control, via encoding of incon-
gruency-related information (see Fig. 1A, bottom row). Such in-
formation, according to this view, is used by dorsolateral PFC
(DLPFC), in concert with lateral posterior parietal cortex
(LPPC), to “implement” control, via encoding of goal and target-
related information (see Fig. 1A, top row). Thus, this model pre-
dicts key functional dissociations between medial and lateral
frontoparietal cortex (see Fig. 1B). But although this view has
been influential, directly establishing these dissociations during
the performance of standard color-word Stroop tasks has been
difficult.

To date, the most traction on this problem has been gained
via fMRI designs that temporally dissociate presentation of task-

rule and incongruency-related information, in which subjects
were instructed before each Stroop trial about which task to per-
form (color-naming, word-reading; MacDonald et al., 2000;
Floden et al., 2011). But, while these studies generally found sup-
portive evidence for the key claims, results were subject to three
notable limitations. First, these studies were likely underpowered
for fMRI (e.g., N= 12 in Floden et al., 2011; N= 9 in MacDonald
et al., 2000). This fact alone warrants a follow-up study. Second,
it is unclear whether the results extend to the more-standard
Stroop-task design, in which task rules are not explicitly
instructed before each trial, but are instead internally main-
tained. For example, goal-relevant coding in DLPFCmay depend
on such explicit rule instruction. Third, the prior results do not
speak to functional dissociations within a single Stroop trial, dur-
ing which interference is actually experienced and resolved. It is
therefore possible, for instance, that the role of DLPFC (or other
frontoparietal regions) in Stroop is primarily preparatory, and is
less critical during actual interference resolution.

To address these questions, a neuroanatomically precise tech-
nique is needed that does not rely on temporal dissociations, but
can instead read out multiple, simultaneously encoded sources of

Figure 1. Schematic of framework and hypotheses. A, Conceptual framework. Cognitive theories and computational models of control have decomposed the classic color-word Stroop task
into three task dimensions: the target (the goal-relevant mapping of the stimulus hue to the target response, i.e., color naming), the distractor (the prepotent but goal-irrelevant mapping of
the stimulus word to the non-target or distractor response, i.e., word reading), and incongruency (whether the target and distractor responses match or mismatch). B, Hypotheses.
Neuroscientific frameworks of cognitive control propose that representation of task dimensions is anatomically dissociated across medial and lateral frontoparietal cortices. DMFC, including dor-
sal anterior cingulate (dACC) and pre-supplementary motor area (pre-SMA), is proposed to “evaluate” demands for control, using information correlated with the incongruency dimension (A,
bottom row), to signal when (and how) the current attentional or action selection policies are suboptimal (Ridderinkhof et al., 2004; Shenhav et al.,2013). Conversely, dorsolateral PFC (DLPFC),
in concert with LPPC (LPPC), is proposed to guide, or “implement,” goal-driven attentional selection and mapping of hue–target-response processes, by way of representing information related
to the goal-dependent target dimension (A, top row; Miller and Cohen, 2001; Buschman and Miller, 2007). Double dissociations are therefore predicted at multiple levels of analysis. At the
group level, incongruency coding (orange univariate distributions) should predominate in DMFC, whereas target coding (green univariate distributions) should predominate in DLPFC. At the
individual level, if the strength of target-related coding in DLPFC reflects the robustness of goal-driven selection, then subjects with stronger DLPFC target coding should resolve Stroop interfer-
ence more efficiently (green bivariate distribution; Kane and Engle, 2002; Braver, 2012). Conversely, if the strength of incongruency-related coding in DMFC indicates a maladaptive selection
policy, then subjects with stronger incongruency-related coding should resolve Stroop interference less efficiently (orange bivariate distribution; MacDonald et al., 2000; Braver, 2012). The b
notation in axis titles corresponds to that used in E (and throughout this manuscript); �b indicates mean over subjects. C-E, Analytic framework. Participants performed a color-word Stroop
task while undergoing an fMRI scan (C). To derive neural correlates of the theorized task dimensions (in A-B), a general linear model estimated the BOLD response evoked by 16 unique Stroop
stimuli (e.g., “WHITE” displayed in blue hue) independently for each voxel. We analyzed a mostly-incongruent trial condition to obtain balanced estimates of each trial type. The Glasser et al.
(2016) multimodal atlas was used to parcellate cortex (D, light silver borders). Contiguous sets of parcels that tiled our ROIs (“superparcels”) were defined and treated as analytic units (for list,
see Extended Data Figure 1-1). Within each superparcel, linear correlations among response patterns from the 16 stimuli were estimated to form an empirical similarity matrix (E, left; stimuli
that were white are presented in gray within this manuscript). Through rank regression, these matrices were fit to three representational models (E, right), which corresponded to the three
hypothesized dimensions of the Stroop task (A). The resulting b coefficients summarized the extent to which a parcel emphasized, within its distributed activity patterns, the representation of
each unique task dimension. These b coefficients were used as the primary dependent variables in group-level analyses, and primary independent variables in individual-level analyses (e.g.,
as in B). Critically, we verified the specificity of our design and analysis via simulation (Extended Data Figure 1-2; compare Cai et al., 2019).
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task information from individual brain regions of interest
(ROIs). Multivariate (multivoxel) pattern analysis (MVPA) of
fMRI, in popular use for over a decade (Edelman et al., 1998;
Haxby et al., 2001; Cox and Savoy, 2003), accomplishes exactly
this purpose. Surprisingly, however, these methods have not
been brought to bear on the question of a functional dissociation
between medial and lateral frontoparietal cortex in resolving
Stroop conflict.

We fill this gap in the literature by using representational sim-
ilarity analysis (RSA; Edelman et al., 1998; Kriegeskorte et al.,
2008), a specific MVPA framework, to test for dissociations in
frontoparietal coding during Stroop-task performance (see Fig.
1C–E). We conducted a retrospective analysis of data collected as
part of the Dual Mechanisms of Cognitive Control project
(Braver et al., 2020). Our primary goal was proof-of-principle: to
demonstrate the potential of RSA for testing theorized distinc-
tions in neural coding within cognitive control tasks, such as the
Stroop (Freund et al., 2021).

Materials and Methods
We report how we determined our sample size, all data exclusions, all
manipulations, and all measures in the study (Simmons et al., 2011).

Code, data, and task accessibility
Code (R Core Team, 2019) and data to reproduce all analyses, in addi-
tion to supplementary analysis reports, are publicly available (https://
doi.org/10.5281/zenodo.4784067). As part of the planned data release of
the Dual Mechanisms of Cognitive Control project, raw and minimally
preprocessed fMRI data have been deposited on OpenNeuro (https://
doi.org/10.18112/openneuro.ds003465.v1.0.3). Additionally, the authors
will directly share the specific fMRI data used for this study on request.
Task scripts are available at the project website (http://pages.wustl.edu/
dualmechanisms/tasks). More detailed information regarding all aspects
of the project can be found on the Project’s OSF page (https://osf.io/
xfe32/).

Participants
Individuals were recruited from the Washington University and sur-
rounding St. Louis metropolitan communities for participation in the
Dual Mechanisms of Cognitive Control project. The present study began
with a subset (N=66; 38 women, 26 men, 1 “prefer not to answer”) of
these subjects: those with a full set of imaging and behavioral data from
the Stroop task during a particular scanning session (the “proactive” ses-
sion), selected for methodological reasons (see Selection of data). One
subject was excluded from all analyses because of a scanner error. We
split the remaining sample into two sets of individuals: a primary analy-
sis set (N=49; 27 women, 21 men, 1 “prefer not to answer”), which we
used in all analyses, and a validation set (N=16; 11 women, 5 men),
which was only used in the Model selection analysis (see below). This
unbalanced partitioning was done to account for the familial structure
present within our sample. Specifically, subjects within each set (primary
validation) were all unrelated; however, subjects within the validation set
were co-twins of 16 subjects within the primary analysis set. Two of
these co-twins were selected for use in the primary analysis set as their
respective co-twins had atypically high rates of response omission
(.10%; .20% errors of any type); the remaining co-twins were ran-
domly selected. Critically, partitioning the sample in this way ensured
that the primary analysis set was a random sample of independent
subjects.

The partitioning of the data into two subsets also afforded the oppor-
tunity to use the validation subset as held-out data for evaluation of the
brain–behavior model within the Model selection analysis. As we per-
formed this sorting of individuals into primary and validation sets only
once and did not analyze the validation-set data (except to assess predic-
tive accuracy of the final selected model) the validation set provides an
unbiased assessment of predictive accuracy, in the sense that no statisti-
cal “double-dipping” could have occurred. But because the sets are

familially dependent, it is perhaps more accurate to consider the valida-
tion-set analyses as assessing a kind of test–retest reliability (i.e., while
eliminating the potential confound of practice effects), rather than pro-
viding an estimate of out-of-sample predictive accuracy. To evaluate this
matter, follow-up control analyses were conducted in which the co-twins
were removed from the primary analysis set.

Experimental design and statistical analysis
Task. Participants performed the verbal color-word Stroop (1935)

task. Names of colors were visually displayed in various hues, and partic-
ipants were instructed to “say the name of the color, as fast and accu-
rately as possible; do not read the word.”

The set of stimuli consisted of two subsets of color-word stimuli
(randomly intermixed during the task): a mostly incongruent and an
unbiased set. Each stimulus set was created by pairing four color words
with four corresponding hues in a balanced factorial design, forming 16
unique color-word stimuli within each set. The mostly incongruent set
consisted of stimuli with hues (and corresponding words) ‘blue’
(RGB=0, 0, 255), ‘red’ (255, 0, 0), ‘purple’ (128, 0, 128), and ‘white’ (255,
255, 255); the unbiased set, of ‘black’ (0, 0, 0), ‘green’ (0, 128, 0), ‘pink’
(255, 105, 180), and ‘yellow’ (255, 255, 0). These words were centrally
presented in uppercase, bold Courier New font on a gray background
(RGB=191, 191, 191). Of stimuli within the mostly incongruent set,
incongruent stimuli were presented to subjects more often than congru-
ent stimuli (per block, proportion congruent = 0.25). Unbiased stimuli
were presented with a balanced frequency (proportion congruent = 0.5).
These manipulations of incongruency statistics are standard manipula-
tions to elicit proactive control (Bugg, 2014; e.g., Gonthier et al., 2016)
and were performed to investigate questions outside the scope of the
current study. Thus, as described further below, the unbiased stimulus
set was excluded from all analyses.

Each trial (see, e.g., Fig. 1C) began with a central fixation cross, pre-
sented for 300ms on a gray background (RGB=191, 191, 191). The
color-word stimulus, preceded by a blank screen following fixation offset
(100ms), was centrally presented for a duration of 2000ms, fixed across
trials. The duration of the intertrial interval (triangle of fixation
crosses) was 900, 2100, or 3300ms, selected randomly (with uniform
probability). Each of two scanning runs consisted of three blocks of
36 trials, intermixed with four resting fixation blocks, during which
a fixation cross appeared for 30 s. This formed a mixed block-event
design (Petersen and Dubis, 2012). Each of the 16 mostly incongru-
ent stimuli — that is, each unique colored word (e.g., “BLUE” dis-
played in red hue) — was presented in both runs. Within each run
for each participant, mostly incongruent stimuli were presented an
equal number of times within each block. Within each block, stimu-
lus order was fully randomized.

Selection of data.We focused our fMRI pattern analyses solely on tri-
als from themostly incongruent stimulus set within a particular scanning
session (the “proactive” session) of our Stroop task. This selection was
made purely on the basis of methodological reasoning: these trials were
the only set of trials within the larger Dual Mechanisms project in which
each unique Stroop stimulus (i.e., one of the 16 color-word combina-
tions) was presented an equal number of times (9) to each participant,
constituting a balanced design. Balanced designs ensure that differences
in the total number of trials per condition cannot explain any differences
observed in pattern correlations among conditions.

Display and recording systems. The experiment was programmed in
E-Prime 2.0 (2013, Psychology Software Tools), presented on a
Windows 7 Desktop, and back-projected to a screen at the end of the
bore for viewing via a mirror head-mount. Verbal responses were
recorded for offline transcription and response time (RT) estimation.
The first 45 participants spoke into a MicroOptics MR-compatible elec-
tronic microphone (MicroOptics Technologies); because of mechanical
failure, however, we replaced this microphone with the noise-cancelling
FOMRI III (OptoAcoustics), which subsequent participants used. A
voice-onset processing script (from the MATLAB Audio Analysis
Library) was used to derive RT estimates on each trial via spectral
decomposition (the accuracy of which was verified by manually coding
RTs from a subsample of subjects and ensuring the two methods gave
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similar estimates). Code for this algorithm is available within the Dual
Mechanisms GitHub repository (https://github.com/ccplabwustl/
dualmechanisms/tree/master/preparationsAndConversions/audio).

Importantly, we verified that the change in microphone did not induce
confounding between-subject variance in RT measures of interest. While
RT estimates recorded via the Micro-Optics microphone tended to be
slower (b=102.59, p=0.01) and more variable (x 2

9 ¼ 3655; p ¼ 0), the
magnitude of the Stroop effect was not observably impacted by the micro-
phone change (b = –5.88, p=0.64).

Image acquisition, preprocessing, and GLM. The fMRI data were
acquired with a 3T Siemens Prisma (32 channel head-coil; CMRR multi-
band sequence, factor = 4; 2.4 mm isotropic voxel, with 1200ms TR, no
GRAPPA, ipat = 0), and subjected to the minimally preprocessed func-
tional pipeline of the Human Connectome Project (version 3.17.0), out-
lined by Glasser et al. (2013). More detailed information regarding
acquisition can be found on the Project OSF site (https://osf.io/tbhfg/).
All analyses were conducted in volumetric space; surface maps are dis-
played in figures only for ease of visualization. Before revision of this
manuscript, the data were reprocessed with fMRIPrep, using the stand-
ard fMRIPrep pipelines (Esteban et al., 2019, 2020). At this point,
the preprocessed results with the HCP pipelines were inadvertently
removed. Thus, some follow-up control analyses were conducted with
the fMRIPrep-preprocessed data (Extended Data Figs. 2-4, 3-2, 4-4).
The fMRIPrep pipeline was implemented in a Singularity container
(Kurtzer et al., 2017) with additional custom scripts used to implement
file management (more detail on the pipeline is available at https://osf.
io/6p3en/; container scripts are available at https://hub.docker.com/u/
ccplabwustl).

After preprocessing, to estimate activation patterns, we fit a whole-
brain voxelwise GLM to BOLD time-series in AFNI, version 17.0.00
(Cox, 1996). To build regressors of primary interest, we convolved with
an HRF [via AFNI’s BLOCK(1,1)] 16 boxcar time courses, each coding
for the initial second of presentation of a mostly incongruent stimulus
that resulted in a correct response. We also included two regressors
[similarly created via BLOCK(1,1)] to capture signal associated with con-
gruent and incongruent trials of noninterest (unbiased stimuli) that
prompted correct responses, an error regressor coding for any trial in
which a response was incorrect or omitted (via BLOCK), a sustained
regressor coding for task versus rest (via BLOCK), a transient regressor
coding for task-block onsets [as a set of piecewise linear spline functions
via TENTzero(0,16.8,8)], six orthogonal motion regressors, five polyno-
mial drift regressors (order set automatically) for each run, and an inter-
cept for each run. These models were created via 3dDeconvolve and
solved via 3dREMLfit. The data for each subject’s model consisted of 2
runs� 3 blocks� 36 trials (144 from the mostly-incongruent stimulus
group, 72 from unbiased). Frames with FD. 0.9 were censored.

Definition of ROIs. Our primary hypotheses concerned a set of six
anatomic regions: DMFC, DLPFC, and LPPC in each hemisphere.
Consequently, our primary analyses used a targeted ROI-based analysis
approach. Rather than defining functional ROIs via a whole-brain
searchlight, which has known issues (Etzel et al., 2013), we defined ROIs
via a cortical parcellation atlas. We selected the MMP atlas (Glasser et
al., 2016) for two reasons: (1) the atlas was developed recently via multi-
modal imaging measures; and (2) individual MMP parcels are relatively
interpretable, as they are heterogeneously sized and have been explicitly
connected to a battery of cognitive tasks (Assem et al., 2020), the canoni-
cal functional connectivity networks (Ji et al., 2019), and a large body of
neuroanatomical research (Glasser et al., 2016). We used a volumetric
version, obtained from https://figshare.com/articles/HCP-MMP1_0_
projected_on_MNI2009a_GM_volumetric_in_NIfTI_format/3501911?
file=5534024 (also available on the project GitHub repository; see Code,
Data, and Task accessibility). We then defined a set of six spatially con-
tiguous sets of MMP parcels (three in each hemisphere), which we refer
to as “superparcels,” that corresponded to each of our ROIs. For full
superparcel definitions, see Extended Data Fig. 1-1. DMFC was defined
as the four parcels covering SMA–pre-SMA and dACC. DLPFC was
defined as the four parcels that cover middle frontal gyrus (i.e., mid-
DLPFC). LPPC was defined as all parcels tiling IPS, from the occipital
lobe to primary somatosensory cortex. The overwhelming majority of

parcels that met these anatomic criteria were assigned, within a previous
report, to the cinguloopercular (most of DMFC), frontoparietal (most of
DLPFC), and dorsal-attention (most of LPPC) control networks (Ji et al.,
2019). Further, these ROI definitions contain several parcels that corre-
spond to key nodes within the “multiple demand” network (Assem et al.,
2020). To assess the robustness of our results to particular superparcel
definitions, we additionally used alternative, more inclusive, superparcel
definitions of DMFC and DLPFC (see Extended Data Fig. 1-1). For the
brain–behavior model selection analysis (see Model selection), we com-
piled a larger set of anatomically clustered MMP parcels, covering
regions across the cortex (Extended Data Fig. 3-3). Two additional, non-
MMP ROIs were included in this set, to give better coverage of par-
ticular functional brain regions. A mask for ventral somatomotor
cortex (the “SomatoMotor–Mouth” network) was obtained from
the Gordon atlas (Gordon et al., 2016), as the MMP does not split
somatomotor cortex into dorsal and ventral divisions. A mask for
left ventral occipito-temporal cortex (encompassing the “visual
word-form” area) was obtained using MNI coordinates
�54,x,�30, �70 ,y,�45, �30,z,�4, specified in a prior
report (Twomey et al., 2011). To remove cerebellar voxels from
this ROI, we used the Deidrichsen atlas (Diedrichsen, 2006) hosted
by AFNI (https://afni.nimh.nih.gov/pub/dist/atlases/SUIT_Cerebellum/
SUIT_2.6_1/).

Estimation of coding strength b . To estimate the regional strength of
target, distractor, and incongruency coding, we used the RSA framework
(Kriegeskorte et al., 2008). The RSA framework consists of modeling the
observed similarity structure of activation patterns with a set of theoreti-
cally specified model similarity structures (see Fig. 1E). For a given sub-
ject and cortical region, fMRI GLM coefficient estimates for each of the
16 conditions of interest (four colors factorially paired with four words;
e.g., the word “WHITE” presented in blue hue) were assembled into a
condition-by-voxel activity pattern matrix B. The observed similarity
structure was estimated as the condition-by-condition correlation matrix
R ¼ CorðBÞ. Cell Rij of this matrix gives the linear correlation observed
between activity patterns evoked by conditions i and j. Model similarity
structures were specified in this same correlation matrix form. The target
model assumed that conditions (stimuli) with the same hue will evoke
identical patterns, regardless of whether the words or congruency match
(or mismatch). That is, if the hue of condition i= j, this model predicts
Rij = 1, otherwise 0. (In the “target”matrix in Fig. 1E, the only cells equal
to 1 — i.e., blue cells — are those in which the stimulus hues match.)
The distractor model assumed that conditions with the same word will
evoke identical patterns, regardless of the hue or congruency. (If the
word of condition i= j, Rij = 1, otherwise 0. In the “distractor” matrix in
Fig. 1E, the only cells equal to 1 are those in which the stimulus words
match.) The incongruency model assumed that only conditions that
were incongruent would evoke identical patterns, regardless of the hue
or word. (If i and j are both incongruent, Rij = 1, otherwise 0. In the
“incongruency” matrix in Fig. 1E, the only cells equal to 1 are those in
which both stimuli are incongruent.) As a covariate of noninterest, we
also included a model capturing similarity between congruent condi-
tions (if i and j are both congruent, Rij = 1, otherwise 0). We additionally
examined alternative approaches to RSA modeling of incongruency, to
see whether our results were robust to this parameterization of incongru-
ency and congruency (see Alternative RSA incongruency models).

These four models were jointly fitted to the observed similarity struc-
ture from each region through multiple regression (ordinary least-
squares), separately for each subject. The response vector y and design
matrix of this regression were assembled in a series of steps. (1) The 120
unique off-diagonal elements of each similarity matrix (one observed
and four models) were extracted and unwrapped into vectors. (2) The
four model similarity vectors were separately z-scored and assembled
into columns. This formed the RSA design matrix. (3) The observed sim-
ilarity vector was rank-transformed (Nili et al., 2014) then z score stand-
ardized, to form a vector r. (4) The vector r was prewhitened to remove
a specific nuisance component. This component stemmed from the task
design: though each mostly incongruent stimulus occurred an equal
number of times throughout the course of a session, these stimuli were
not fully balanced across the two scanning runs. Specifically, half of the
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stimuli were presented 3 times in the first run versus 6 times in the sec-
ond (vice versa for the other half). As each scanning run contains a large
amount of run-specific noise (Mumford et al., 2014; Alink et al., 2015),
this imbalance across runs could lead to a bias in the resulting b coeffi-
cients, in which pattern similarity of stimuli that mostly occurred within
the same run would be inflated. We formalized this component of bias
as another model similarity vector, v, with elements equal to 1 if the run
in which condition imost frequently occurred = the run in which condi-
tion j most frequently occurred, otherwise 0. The magnitude of this bias
was estimated as the slope term b1 in a linear regression r ¼ vb11b01e,
where b0 is the intercept coefficient and e is the residual vector. The
model v was scaled by its magnitude and then subtracted from r, form-
ing the RSA response vector y ¼ r� vb1. We additionally used an alter-
native, downsampling technique to verify that our primary findings
were robust to this issue (seeDownsampling analysis).

Thus, the RSA regression yielded three b coefficients of interest:
b target, b distr., b incon.. These coefficients can be understood as a (stand-
ardized) contrast on (rank-transformed) correlations of activity patterns,
between conditions in which only one task dimension was shared (e.g.,
the target dimension for b target), versus those in which no dimensions
were shared (i.e., different levels of target, distractor, and congruency).

Dimensionality reduction. We used non-metric multidimensional
scaling (Kruskal, 1964), a flexible, nonparametric dimensionality reduc-
tion technique, to visualize the structures of activity patterns within
selected regions (see Fig. 2): ventral somatomotor cortex (corresponding
to “mouth” homunculi), primary visual cortex (V1), and (left) DMFC.
These parcels were selected to highlight coding of each task dimension.
For each selected region, we averaged observed correlation matrices
across subjects and then subtracted these values from 1 to obtain a dis-
similarity matrix. Before averaging, we z-transformed (inverse hyper-
bolic tangent, artanh) correlations, and inverted this transform after
averaging. (In contrast to the RSA regression above, we did not rank-
transform correlation matrices, as non-metric multidimensional scaling
incorporates a monotonic regression). Similar to our RSA, we prewhit-
ened each similarity matrix before conducting this procedure (see Step 4
in Estimation of coding strength b ). Each mean dissimilarity matrix was
submitted to an implementation of Kruskal’s nonmetric multidimen-
sional scaling, vegan::metaMDS() in R, to generate a two-dimensional
configuration (Oksanen et al., 2019).

Group-level dissociation analysis. To test for regional dissociations in
coding preferences, we fit a hierarchical linear model on RSA model fits

(see Estimation of coding strength b ) obtained from our three ROIs
within each hemisphere, and for our three RSA models. Fixed effects
were estimated for the interaction of RSA model, ROI, and hemisphere.
Random effects by subject were estimated for the interaction of RSA
model and ROI, with a full covariance structure (9� 9; Barr et al., 2013).
This model was fit with lme4::lmer() in R (Bates et al., 2014).

Planned contrasts on the fixed effects were performed to test
our hypotheses. p values were estimated using an asymptotic
z-test, as implemented by the multcomp::glht() function in R
(Hothorn et al., 2008). We performed three types of contrasts:
(1) to compare coding strengths within-region (e.g., DMFC:
incon:�target); (2) to compare between regions, within-model
(e.g., target: DLPFC� DMFC); and (3) to test their interaction
[e.g., ðtarget� incon:Þ � ðDLPFC� DMFCÞ]. These contrasts were
performed first by collapsing across hemisphere, then within each
hemisphere separately. As we did not have any hypotheses regard-
ing lateralization, p values from hemisphere-specific contrasts
were FDR-corrected across hemispheres.

Selection of behavioral measures for individual-level analyses. Audio
recordings of verbal responses were transcribed and coded for errors
offline by two researchers independently. Discrepancies in coding
were resolved by a third. Errors were defined as any nontarget color
word spoken by a subject before utterance of the correct response
(e.g., including distractor responses, but not disfluencies) or as a
response omission. Trials in which responses were present but unin-
telligible (e.g., because of high scanner noise or poor enunciation)
were coded as such.

We fit two hierarchical models on these data: one on errors and one
on RTs. Several observations were excluded from these models. From the
error model, only trials with responses coded as “unintelligible” were
excluded (54). From the RT model, several types of trials were excluded:
trials with RTs .3000ms (1) or ,250ms (53; 52 of which were equal
to zero). A cluster of fast and unrealistically invariable RTs from 2 sub-
jects (23/216, 26/216) that were likely because of an artifact of insuffi-
cient voice-onset signal within the recording. Trials with a residual RT
that was more extreme than three interquartile ranges from an initial
multilevel model fitted to all subjects data (of the structure of the
model equation below; as in Baayen and Milin, 2010). All were trials
with incorrect (137), unintelligible (54), or no response (52). In total,
232 trials were excluded (0-62 per subject), leaving 10,352 trials for
analysis (154-216 per subject).

target
incon.

distr.

0.0

0.1

0.2

DMFC (L) DLPFC
Region

M
od

el
 fi

t (
β)

A

B

B B

BP
P

P

P

RR

R

R

W

W

W

W

B

B

B
B

P
P

P

P

R
R

R

R

W

W

W
W

B

B

B
BP P

P

P

R

R

R

R

W

W
W W

DMFC (L)

vS1/vM1 V1

B

target
distr.

0.0

0.1

0.2

V1 vS1/vM1
Region

M
od

el
 fi

t (
β)

C

Figure 2. Group-level results. A, A single dissociation between DLPFC versus DMFC. For simplicity of display, DLPFC estimates are averaged across hemisphere (for per-hemisphere
means for each region, see Table 1). Error bars indicate 95% CIs of between-subject variability (estimated via bias-corrected and accelerated bootstrap). Horizontal gray lines at the
top indicate significance of within-subject significance tests (for contrast estimates, see Table 1). While all ROIs encoded target and incongruency information, and did so more
strongly than distractor information (coding of which was not detected), incongruency coding was stronger in left DMFC versus DLPFC. These results were generally robust to different
analysis decisions and implementations (Extended Data Figures 2-1, 2-2, 2-4, 2-5). Further, a univariate analysis failed to detect significantly higher activation on incongruent versus
congruent trials in these regions (Extended Data Figure 2-3). B, Across-voxel activity patterns from three select regions, embedded within a two-dimensional space (via nonmetric
multidimensional scaling). These geometries exemplify regional dissociations in coding of Stroop-task dimensions. Letters represent the first letter of the corresponding distractor
word (BLUE, PURPLE, RED, WHITE), and hues represent the target color (stimuli that were white are presented here in gray). Connecting lines are drawn to highlight the various struc-
tures present. The geometry of (left) DMFCis marked by a radial separation of patterns evoked by congruent and incongruent conditions (lines connect congruent and incongruent
stimuli of each target color), such that incongruent patterns tend to be located more centrally (i.e., more similar to each other), whereas congruent patterns peripherally diverge (i.e.,
less similar to each other). This suggests that incongruent trials drove a common component of activation in this region, regardless of target or distractor features. In contrast, within
primary ventral somatomotor cortices (vS1/vM1), patterns strongly cluster by target level (color), whereas in primary visual cortex (V1), they tend to cluster by distractor level (word).
This pattern formed a double dissociation (C), and indicated our distractor model was adequately powered to detect distractor coding in sensory regions (compare A). C, Plotting con-
ventions follow those in A. Horizontal dotted lines indicate 0:1.p.0:05 (for estimates, see text).
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RTs for subject s were modeled (following Laird and Ware, 1982
notation) as follows:

RTs ¼ ð1; stroopsÞb1 ð1; stroopsÞus 1 es
us ; N2ð0;T2

2�2Þ
es ; Nð0; css 2Þ

where RTs is a column vector of the RTs from subject s, 1 is an all-ones
vector (intercepts), stroops is a vector indicating incongruent trials, and
cs is a subject-specific parameter by which their residual variance was
scaled. Critically, b and us contained coefficients corresponding to the
classical Stroop interference effect contrast (incongruent – congruent),
for the group (b) and subject (us) levels. The scaling parameters cs
relaxed the assumption that each subject had a common residual var-
iance, a well-warranted complexity, given the vastly improved fit of the
heterogeneous-variance model (x 2

48 ¼ 4299; p ¼ 0;DBIC ¼ �3856;
DAIC ¼ �4203). To accomplish this, the RT model was fitted with
nlme::lme() in R (Pinheiro et al., 2019). The behavioral error model had
similar predictors, but assumed binomially distributed error, with logit
link function (fitted in lme4).

This hierarchical modeling framework enabled us to estimate the
amount and internal consistency of individual variability in the Stroop
interference effect within both RTs and errors while accounting for trial-
level error (e.g., Haines et al., 2020). We used these subject-level estimates
to validate that our behavioral measures met prerequisite properties for
individual differences analyses. To assess the amount of between-subject
variability in the Stroop interference effect, a nested model comparison
was conducted, in which the models fitted above were compared with a
random-intercept model. Stroop effects differed significantly across sub-
jects in RT (x 2

2 ¼ 87:53; p ¼ 0:00;DBIC ¼ �69:08;DAIC ¼ �83:53),
but not in accuracy (x 2

2 ¼ 0:69; p ¼ 0:71;DBIC ¼ 18;DAIC ¼ 3). We
therefore did not further analyze accuracy. To assess internal consistency
(defined here as cross-run correlation), we fit a model with separate congru-
ency factors (fixed and random) per run, and a full 4� 4 covariance struc-
ture, which was used to obtain the cross-run correlation in Stroop effect.
Individuals’ Stroop interference effects in RT were estimated to be highly
consistent across scanning runs (r=0.95). We therefore considered our
measurements of RT to be adequate for individual differences analysis.

Individual-level dissociation analysis. Similar to our Group-level dis-
sociation analysis, we tested our individual-level hypotheses within a
hierarchical modeling framework. Preliminary analyses suggested that
error measures were inadequate for individual differences analyses (see
above), so we focused solely on RT measures.

We began with the RT model described in the preceding section.
However now, for a given RSA model and ROI, we incorporated into
the fixed effects each subject’s estimated coding strength, b s, by interact-
ing this coding-strength term with the congruency factor. This formed a
cross-level, continuous-by-categorical interaction, b s � stroops. The
coefficient on this interaction term described how the Stroop interfer-
ence effect (within-subject) varied across subjects as a function of their
coding strength (between-subject). To test our hypotheses, we per-
formed contrasts on these interaction coefficients, which are outlined
within Results describing Figure 3.

Model selection. To complement our hypothesis-driven brain–behav-
ior analyses, we used a more data-driven model-selection approach. An
expanded set of 24 superparcels (in addition to our six ROIs) was
defined (see Fig. 3B; for list, see Extended Data Fig. 3-3). Some superpar-
cels were included as ROIs, others were included as negative controls
(i.e., regions that were not predicted to be important for explaining be-
havioral performance). Subject-level coefficients of the Stroop interfer-
ence effect contrast were extracted from the behavior-only RT model
and used as the response vector (in the model equation, the slope ele-
ments of us; also known as BLUPs or conditional modes). RSA was con-
ducted on each superparcel (see Estimation of coding strength b ),
furnishing three b coefficients per superparcel. These 72 measures were
fitted to the response vector via elastic net regression, implemented via
glmnet::glmnet() in R (Friedman et al., 2010). Parameter a was set to 0.5
(balancing lasso and ridge penalties). The parameter l was tuned via 10-
fold cross-validation (default) using the “1-SE rule”: the smallest l.1

SE of the minimum l across folds was saved (Hastie et al., 2009); this
routine was repeated 1000 times, and the minimum mode (there were
ties) of the saved l s was selected. We selected the minimum mode
because the maximum suppressed all variables from the model.

To assess validation-set accuracy, the selected model coefficients
were applied to a design matrix from validation-set subjects, generating
a predicted Stroop effect vector. The linear correlation was estimated
between this predicted Stroop effect and observed Stroop effects (esti-
mated as conditional modes via a hierarchical model separately fitted to
validation-set data). The significance of this correlation was assessed by
randomly permuting the training-set response vector, refitting the
model, generating new predicted validation-set values, and re-estimating
the predicted–observed correlation 10,000 times. The p value was given
by the proportion of resamples in which the null correlation was greater
than the observed correlation.

Exploratory whole-cortex RSA. The RSA-model fitting procedure, as
outlined in Estimation of coding strength b was separately conducted
on each MMP cortical parcel. Inferential statistics followed those
suggested by Nili et al. (2014). One-sided signed-rank tests were
conducted for significance testing (.0). p values were FDR-cor-
rected over all 360 parcels, separately for each task dimension (tar-
get, distractor, incongruency).

Univariate activation analyses. We additionally conducted a stand-
ard “univariate activation” analysis on these data. This was not meant to
evaluate whether univariate activity was a plausible confounding variable
in our analysis, but rather to provide some basis for comparing our data
to most extant neuroimaging studies of Stroop. For a given ROI (or
MMP parcel), b coefficients from the first-level fMRI GLM were aver-
aged over voxels by stimuli, then over stimuli by congruency. These
mean values were then contrasted, analogous to the behavioral Stroop
interference effect (incongruent – congruent). This statistic gives an esti-
mate of the overall (across-voxel) difference in fMRI activity within a
given brain region on incongruent versus congruent trials.

Follow-up control analyses
To establish the robustness of our results, we conducted several control
analyses that examined a number of confounds and concerns: potential
differences in signal-to-noise ratio (SNR) across prefrontal ROIs, the
effects of head motion, different RSA models for incongruency coding,
the presence of bias imposed by the experimental design, within-run ver-
sus between-run RSA estimation, and the effects of downsampling to
account for different trial numbers across runs. These are each described
next.

Comparison of SNR ratios. To test for differences in SNR between
DMFC and DLPFC, we estimated “noise ceilings” within each region
and contrasted them across regions. Noise ceilings indicate the maxi-
mum observable group-level effect size (RSA model fit) given the level of
between-subject variability in similarity structure (Nili et al., 2014).
Lower (smaller) average noise ceilings indicate poorer SNR for group-
level tests. We used the cross-validated “lower-bound” noise ceiling esti-
mator of Nili et al. (2014), as this yields a lower-variance estimate, and
therefore more powerful contrast across regions, than the non-cross-
validated “upper-bound” (Hastie et al., 2009). For a given region, the
lower-bound noise ceiling is defined for each subject s in 1; :::;N as
Corðys; �y�sÞ: the linear correlation between a subject s’ observed similar-
ity vector, ys, and the group-mean vector excluding subject s, �y�s (for
definition of y, see Estimation of coding strength b ). As each of the N
estimates is interdependent, we used a percentile bootstrap to contrast
noise ceilings across regions. In each resample (of 10,000), noise ceilings
were artanh transformed, contrasted across regions within-subject, then
averaged across subjects. A two-sided p value was provided by comput-
ing the proportion of resampled means greater than zero, p, then taking
the minimum of 2p and 2(1 – p). Finally, we conducted “two one-sided
tests” for equivalence (Schuirmann, 1987; Lakens, 2017) to affirm a null
hypothesis of no difference between regions in noise ceiling. This con-
sists of defining a threshold effect size, the minimum effect size of inter-
est, and testing whether the observed difference in noise ceilings is
significantly less extreme than the threshold. For an objective threshold,
we used the smallest standardized effect size at which our bootstrap
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procedure was expected to retain 80% power, Cohen’s d= 0.35, deter-
mined via Monte Carlo simulation.

RSA on head motion estimates. As a negative control analysis for our
exploratory whole-cortex RSA, we attempted to decode task variables
(target, distractor, incongruency) via RSA from framewise estimates of
head motion. The 6 motion regressors that were used in the fMRI GLM
as nuisance covariates (corresponding to translation and rotation in 3
dimensions) were regressed on the design matrix containing predicted
BOLD timecourses of our 16 conditions of interest. The coefficient ma-
trix resulting from this regression was then submitted to the RSA proce-
dures described in Estimation of coding strength b and Exploratory
whole-cortex RSA. To check whether more aggressive movement denois-
ing within the fMRI GLM was warranted (i.e., in addition to the 6 nui-
sance regressors), we conducted this same movement-based RSA,
however, using 12 motion regressors (the 6 bases and their temporal
derivatives). RSA model fits between the 6 and 12-basis motion-based
RSAs were compared via paired-sample signed-rank test.

Alternative RSA incongruency models. The RSA incongruency model
parameterized the congruent–congruent correlations (i.e., Rij where i
and j are both patterns from congruent trials, denoted here simply as
CC) with a separate nuisance regressor. That is, these cells were effec-
tively excluded, and the model instead computed the contrast II – IC.
This exclusion was done because we have no specific hypotheses
regarding how congruent trials should be encoded relative to one

another. Other parameterizations are possible, however, including
models that (a) incorporate CC correlations within the “baseline” or
intercept term, by omitting the congruent nuisance regressor [i.e.,
II � aveðIC1CCÞ], or (b) that omit IC correlations from the contrast
(i.e., II – CC). We note, however, that (b) is a suboptimal parameter-
ization as it effectively excludes 40% (48/120) of observations per
subject (i.e., all IC cells). To verify that our results were not depend-
ent on the particular modeling approach we chose, we compared the
observed RSA model fits to these alternative parameterizations. In
brief, subject’s model fits were highly similar between the parame-
terizations (see Group and Exploratory whole-cortex RSA; Extended
Data Fig. 2-5). Thus, to help streamline the Results, we only con-
ducted and reported analyses using the original RSA incongruency
parameterization (in which the congruency model was a nuisance
covariate).

Design bias. For the current study, a typical within-run form of RSA
estimation was implemented, in which correlations were computed
among activation patterns estimated within the same scanning run and
first-level GLM.Within-run RSA has been criticized because it is suscep-
tible to design biases that occur when trial orders are insufficiently
randomized within the experiment (Cai et al., 2019). A priori, this was
not a strong concern in the current design, as trial orders were fully
randomized both within and between participants. Nevertheless, we con-
ducted several diagnostic and robustness analyses to validate that our
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Figure 3. Individual-level results. A, The coding strength of task variables (b ) within right DLPFC and left DMFC accounted for individual differences in the size of the Stroop interference
effect (RT) in hypothesized ways. Inset text represents linear correlation coefficients (r) and 95% CIs (estimated via bias-corrected and accelerated bootstrap). Lines indicate a regression line of
RT onto Model Fit (b ), and confidence bands indicate 95% CIs of predicted values from this regression obtained via percentile bootstrap. The direction of these observed brain–behavior rela-
tionships was robust to alternative, more conservative RSA estimation techniques (cross-run RSA and cross-validated RSA; Extended Data Figure 3-2). For display of relationships between target
and incongruency coding in all ROIs (DLPFC, DMFC, LPPC) and Stroop effect, see Extended Data Figure 3-1. For contrasts on slopes (interaction tests between ROI and RSA model), see Table 2.
B, A larger set of 24 cortical regions were defined for use in a data-driven model selection analysis. Surface maps display in various colors all left-hemisphere regions (excluding left lateral occi-
pito-temporal cortex; for full list and definitions, see Extended Data Figure 2-1). Three RSA models (target, distractor, incongruency) were fitted per region, yielding a set of 72 coding-strength
estimates. These 72 estimates were used to predict Stroop interference effects within a cross-validated model selection procedure. C, Additional brain–behavior associations identified via cross-
validated model selection. Left ventral visual incongruency coding (left panel) and left DLPFC distractor coding (right panel) were selected— in addition to right DLPFC target, right LPPC tar-
get, and left DMFC incongruency. For description of inset text, lines, and bands, see A. D, Estimate of prediction accuracy of the selected model. Within a validation (held-out) set of 17 subjects
(monozygotic co-twins of subjects within the analysis sample), observed Stroop effects were moderately correlated (red line) to predictions from the selected model. A permutation test (gray
distribution) indicated the selected model significantly explained validation-set variance, suggesting that the selected model results are relatively stable.
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results, and conclusions were not impacted by this potential bias. First,
we estimated the extent of the potential bias by running through our
RSA pipeline data simulated under a “worst-case” scenario, that is, when
SNR=0 (details described within Extended Data Fig. 1-2) and across a
wide range of autocorrelation strengths. At worst, the three models were
weakly biased (within 0.02-0.05 of a = 0.05; Extended Data Fig. 1-2).
This result indicated that while the bias was present, it was relatively
minimal (compare Cai et al., 2019). Second, we validated that these
simulated estimates were realistic, by using our actual fMRI data to esti-
mate the false positive rate empirically. To do this, we conducted RSA
on the first-level GLM coefficients from each subjects’ ventricles, as these
voxels should contain no brain activity signal but similar noise charac-
teristics as those of interest (a ventricle mask of 2431 voxels was
obtained from AFNI servers: https://afni.nimh.nih.gov/pub/dist/
tgz/suma_MNI_N27.tgz). By treating the group-level mean and SD
of these RSA model fits as the parameters of a non-central null dis-
tribution, X;Nð �b ; SDðb ÞÞ, we computed the empirical false posi-
tive rate as PðX.za¼0:05Þ, the proportion of this distribution greater
than the customary one-tailed z criterion. All rates were within 0.03
of a = 0.05 (target = 0.07, distractor = 0.04, incongruency = 0.08),
confirming the bias was quite minimal.

Between-run RSA. As an alternative to within-run RSA, various
between-run estimation approaches have been proposed which have
been shown to be less sensitive to potential design biases. We opted not
to use between-run RSA for our primary analyses, both because of the
reduced effects of design bias established above, but also because
between-run RSA is noted to be considerably more conservative that
within-run RSA (Cai et al., 2019). Moreover, several particulars of the
present design are known to further hamper its power. Namely,
between-run RSA makes incomplete use of the data, an issue that is exa-
cerbated to the maximum extent possible in the present case, as our
design has only the minimum number (two) of cross-validation folds
(runs; Diedrichsen et al., 2020). Additionally, because the image acquisi-
tion sequence involved a reversal of phase-encoding direction across the
two runs, this effectively adds a strong nonlinear component of noise if
between-run RSA is used.

Nevertheless, to examine further the extent of design bias in our
data, as well as the robustness of our results to the drop in power
imposed by between-run RSA, we conducted a follow-up analysis of our
primary results using between-run RSA approaches. We conducted two
forms of between-run RSA: the first used “cross-run RSA”, which oper-
ates on the cross-correlation of patterns between scanning runs (see
Alink et al., 2015), and the second used “cross-validated RSA”, which
operates on the inner product of pattern contrasts between runs (see
Walther et al., 2016). We selected these two forms of RSA as they have
complementary benefits. Cross-run correlation is most comparable to
our original within-run correlation, as they are both linear correlations.
However, using this method within our data set also necessitated using
downsampling (as the numbers of trials per condition were not perfectly
balanced at the run-level; see Downsampling analysis), which increases
the variance of resulting estimates because of discarding data. In con-
trast, cross-validated RSA is insensitive (in terms of expected value) to
the issue of trial numbers per condition (Diedrichsen et al., 2020). Using
this method, therefore allowed us to conduct the RSA using all the data
at once, without downsampling. But cross-validated RSA tests a more
constrained hypothesis than cross-run RSA. Whereas cross-run RSA can
be sensitive to nonlinear differences between conditions, cross-validated
RSA tests linear discriminability between conditions. Thus, when a non-
linear boundary separates conditions, cross-validated RSA will fail to
detect an effect, whereas cross-run RSA could succeed. A nonlinear
boundary would occur, for example, when one condition (e.g., incongru-
ent stimuli) drives a reliable, common, response while the other condi-
tions (e.g., congruent stimuli) either drive unreliable, or stable but
heterogeneous, responses. Nevertheless, to make cross-validated RSA as
comparable as possible to our primary RSA, we z-score standardized
patterns before computation and omitted spatial prewhitening (Walther
et al., 2016).

Downsampling analyses. Last, we checked whether the primary
results were robust to the prewhitening method of data preprocessing,

which was introduced to handle the imbalance of trials across runs (see
Estimation of coding strength b , step 4). In this analysis, we instead
handled this issue by performing RSA after equating the number of trials
per run*condition, by iteratively downsampling conditions with random
subsets of trials. Specifically, we first fitted GLMs on fMRI time-series,
separately for each scanning run, that contained a single regressor per
trial (LS-A method of Mumford et al., 2012). The minimum number of
times we presented each unique Stroop stimulus in a single run was 3;
this was the number to which we downsampled all conditions with .3
occurrences. For these conditions, we randomly sampled three trials,
and averaged GLM coefficients voxelwise over these trials. (For 3-trial
conditions, we simply averaged all trials that were present.) This formed
16 separate condition-level coefficient vectors (activity patterns) per run.
We then averaged these coefficient vectors across run, then estimated
condition � condition correlation matrices from these patterns (averag-
ing across runs was omitted from the downsampled cross-run RSA; see
preceding section). We repeated this resampling, averaging, and correla-
tion process 1000 times, and averaged the resulting correlation matrices
across iterations (after an artanh transform). These correlation matrices
were then submitted to the same RSA as outlined in Estimation of coding
strength b , with the omission of the prewhitening step (4).

Results
Influential theories of cognitive control have proposed specific
dissociations in the type of task information encoded by human
medial and lateral frontoparietal cortex (Fig. 1A,B). But previous
studies have largely approached this question indirectly, by using
tasks designed to recruit these regions differentially in time, then
testing for temporal dissociations in regional-mean levels of
fMRI activity. Here, we used a more direct approach, by using
the similarity structure of neural activity patterns evoked within
these regions to estimate their informational content. In particu-
lar, through RSA, we compared neural coding of three distinct
types of Stroop-task information— target, distractor, and incon-
gruency (Fig. 1D,E) — within each ROI simultaneously, while
Stroop interference was being experienced and resolved.

We describe three sets of analyses. First, we examined group-
level effects, to test for neuroanatomical dissociations in repre-
sentation of task information (Fig. 1B, middle). Second, we
examined individual-level effects (i.e., individual differences), to
test for dissociations in brain–behavior relationships (Fig. 1B,
right). These two analyses were ROI-based and primarily focused
on dorsomedial frontal and lateral frontoparietal regions (Fig.
1D), but also included sensorimotor ROIs for comparison pur-
poses. The last set of analyses was conducted in whole-cortex ex-
ploratory fashion, to provide a more comprehensive picture of
the anatomic profile of each task dimension.

Group
DMFC and DLPFC exhibit distinct coding profiles
Primary group-level results are summarized in Figure 2.
Statistical estimates corresponding to results outlined within this
section are contained in Table 1.

The DMFC has been strongly associated with the coding of
incongruency information in response conflict tasks, such as
the Stroop. RSA approaches were used to directly test the
specificity of that hypothesis. This region was indeed found
to encode the incongruency dimension of the Stroop task
(left: �b ¼ 0:11; p ¼ 0:00, right: �b ¼ 0:08; p ¼ 0:00). Addi-
tionally, within left DMFC, a preference for this dimension
was observed: incongruency information was encoded more
strongly than either target or distractor information (vs tar-
get: D �b ¼ 0:07; p ¼ 0:05; vs distractor: D �b ¼ 0:10; p ¼ 0:00;
p values adjusted across hemisphere; Fig. 2A). This DMFC
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preference was prominent enough that it could be seen in the
structure of a low-dimensional embedding (Fig. 2B). Finally,
incongruency coding was neuroanatomically dissociated,
as this coding scheme was reflected more strongly in left
DMFC than in DLPFC activity patterns (D �b ¼ 0:06; p ¼
0:02; Table 1).

We next focused on lateral frontoparietal regions and the
coding of target information. DLPFC indeed encoded target infor-
mation (left: �b ¼ 0:03; p ¼ 0:01 right: �b ¼ 0:04; p ¼ 0:00), and
more strongly than distractor information (D �b ¼ 0:04; p ¼ 0:00).
We did not find a preference, however, for target over incongruency
information in DLPFC (D �b ¼ �0:01; p ¼ 0:62), nor did we

observe significantly stronger target coding than in DMFC
(�b ¼ 0:00; p ¼ 0:92). A qualitatively similar pattern of results
was observed in LPPC: significant target and incongruency
coding, significantly enhanced target versus distractor cod-
ing, but no observed preference among target or incongru-
ency nor detectable difference from DMFC target coding
(Table 1).

Thus, at the group level, we observed a single rather than dou-
ble dissociation between medial and lateral frontoparietal cortex,
in the form of enhanced sensitivity to incongruency relative to
target coding in left DMFC. In all ROIs, however, these two sour-
ces of task information were more strongly encoded than distrac-
tor information.

Sensitivity and control analyses
We next tested a series of hypotheses to scrutinize and extend
our results.

First, we conducted a positive control analysis to bolster con-
fidence in the statistical power of RSA methods within the pres-
ent design. In particular, we sought to determine whether our
methods could detect dissociations in task coding that are
strongly expected to exist. For this, we focused on primary soma-
tomotor and visual cortical ROIs, the responses of which can be
assumed to reflect, relatively selectively, response-related (i.e.,
motoric) and visual form-related coding. As the distractor
(word) defines the visual form of the Stroop stimulus, coding of
form-related features should be captured by our distractor
model. In parallel, as our analysis included only correct-response
trials (i.e., in which the target response was spoken), coding of
motoric features should be captured by our target model.
Consistent with this logic, within early visual cortex, evidence of
preferential distractor coding was observed (Fig. 2C; distractor:
�b ¼ 0:04; p,0:001, target: �b ¼ 0:02; p ¼ 0:17, distractor vs
target: D �b ¼ 0:03; p ¼ 0:05), whereas, within primary ventral
somatomotor cortices (encompassing the “mouth” homunculi),
a relatively selective pattern of target coding was found (Fig. 2C;
distractor: �b ¼ 0:00; p ¼ 0:9, target: �b ¼ 0:13; p,0:001, dis-
tractor vs target: D �b ¼ �0:13; p,0:001). Further, representa-
tion of these dimensions were strong enough to predominate the
overall structures of patterns within low-dimensional embed-
dings (Fig. 2B). Thus, in primary visual and somatomotor
regions, a relatively clear-cut group-level double-dissociation
emerged. This suggests that our models were adequately pow-
ered, at least in primary sensorimotor cortices, to detect func-
tional distinctions, and that the failure to observe distractor
coding in DMFC and DLPFC was not because of a general defi-
ciency in our distractor coding model.

Second, we conducted sensitivity analyses to assess the
robustness of our results to the particular ROI definitions used.
In one analysis, we tested more expansive ROI definitions, by
using alternatively-defined superparcels (Extended Data Fig. 1-
1). These definitions included additional, more rostral PFC par-
cels (1 in DMFC, 3 in DLPFC), which begin to encroach into
ventromedial PFC and frontopolar cortex (e.g., the rostral
DMFC parcel was assigned to the Default-Mode network within
the Cole-Anticevic divisions). Nevertheless, the previously
observed dissociations were robust to these more liberal defini-
tions (Extended Data Fig. 2-1). In the other analysis, we exam-
ined whether the overall superparcel coding profiles were
representative of individual parcels. While DMFC and DLPFC
results generally reflected that of constituent parcels (Extended
Data Fig. 2-2A,B), interestingly, there was substantial heteroge-
neity within left LPPC (Extended Data Fig. 2-2C). Similar to left

Table 1. Group-level results from RSA in frontoparietal ROIsa.

Contrast �b s t p

DMFC (L) incon.b 0.11 0.03 3.65 0.00026
DMFC (R) incon.b 0.08 0.03 2.82 0.00485
DMFC (L) targetb 0.04 0.01 2.61 0.00918
DMFC (R) targetb 0.05 0.01 3.94 0.00008
DMFC (L) distr. 0.01 0.01 0.78 0.43667
DMFC (R) distr. 0.00 0.01 0.19 0.84907
DLPFC (L) incon.b 0.04 0.02 2.04 0.04155
DLPFC (R) incon.b 0.05 0.02 2.39 0.01682
DLPFC (L) targetb 0.03 0.01 2.56 0.01062
DLPFC (R) targetb 0.04 0.01 3.18 0.00147
DLPFC (L) distr. �0.01 0.01 �0.98 0.32561
DLPFC (R) distr. 0.00 0.01 0.31 0.75797
LPPC (L) incon.b 0.07 0.02 3.07 0.00211
LPPC (R) incon.b 0.06 0.02 2.64 0.00818
LPPC (L) targetb 0.03 0.01 2.74 0.00617
LPPC (R) targetb 0.05 0.01 4.38 0.00001
LPPC (L) distr. 0.00 0.01 0.28 0.77722
LPPC (R) distr.c 0.02 0.01 1.86 0.06359
incon:�target j DMFC ðLÞb 0.07 0.03 2.26 0.04737
incon:�target j DMFC ðRÞ 0.03 0.03 0.91 0.36047
incon:�distr: j DMFC ðLÞb 0.10 0.03 3.22 0.00256
incon:�distr: j DMFC ðRÞb 0.08 0.03 2.64 0.00826
target� distr: j DMFC ðLÞ 0.03 0.02 1.63 0.10230
target� distr: j DMFC ðRÞb 0.05 0.02 3.18 0.00297
incon:�target j DLPFC ðLÞ 0.01 0.02 0.46 0.65809
incon:�target j DLPFC ðRÞ 0.01 0.02 0.44 0.65809
incon:�distr: j DLPFC ðLÞb 0.06 0.02 2.41 0.03212
incon:�distr: j DLPFC ðRÞb 0.05 0.02 2.09 0.03671
target� distr: j DLPFC ðLÞb 0.04 0.02 2.76 0.01145
target� distr: j DLPFC ðRÞb 0.04 0.02 2.33 0.01989
incon:�target j LPPC ðLÞ 0.04 0.03 1.62 0.21226
incon:�target j LPPC ðRÞ 0.01 0.03 0.43 0.66707
incon:�distr: j LPPC ðLÞb 0.07 0.03 2.75 0.01202
incon:�distr: j LPPC ðRÞ 0.04 0.03 1.63 0.10282
target� distr: j LPPC ðLÞc 0.03 0.02 1.87 0.06185
target� distr: j LPPC ðRÞc 0.03 0.02 1.96 0.06185
DMFC ðLÞ � DLPFC j incon:b 0.06 0.02 2.38 0.01737
DMFC ðLÞ � DLPFC j target 0.00 0.01 �0.09 0.92467
DMFC ðLÞ � LPPC j incon: 0.04 0.03 1.47 0.14112
DMFC ðLÞ � LPPC j target �0.01 0.01 �0.56 0.57868
½incon:�target� � ½DMFC ðLÞ � DLPFC�b 0.06 0.03 2.20 0.02797
½incon:�target� � ½LPPC ðLÞ � DLPFC� 0.03 0.03 1.06 0.29066
a Group-mean RSA model fits and contrasts between RSA models (target, distractor, incongruency) and
between ROIs (DMFC, DLPFC, LPPC in each hemisphere). Each row displays the statistical estimates from a
given RSA model and ROI, or from a contrast between RSA models or ROIs. Contrasts were conducted
either between RSA models (within ROI) or between ROIs (within RSA model). For example,
target� distr:j DLPFC ðRÞ indicates the contrast between target and distractor RSA model fits (“coding
strengths”) within right DLPFC. �b indicates the mean RSA model fit over subjects. Unless noted, contrasts
were averaged across hemisphere. For contrasts performed separately in each hemisphere, p values were
FDR-adjusted for two comparisons. Products of bracketed terms indicate interactions between RSA model
and ROI. incon., Incongruency; distr., distractor.
b Contrasts with p, 0.05.
c Contrasts with 0:05,p,0:1.
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DMFC, a collection of left LPPC regions spanning the length of
intraparietal sulcus strongly encoded the incongruency dimen-
sion (i.e., IP1, IP2, IPS1, AIP, LIP, MIP).

Third, we examined whether the lack of observed discrimina-
tion between target and incongruency coding dimensions within
DLPFC could be explained by increased error variance poten-
tially present in fMRI activity patterns within this region. Prior
work has suggested that PFC regions might be particularly sus-
ceptible to this confound (Bhandari et al., 2018). It is possible
that we might have observed a dissociation in left DMFC but not
DLPFC because of differential levels of statistical power across
the two regions. We therefore derived an SNR analysis to deter-
mine whether this was a viable explanation (see Materials and
Methods). A paired-sample bootstrap test did not indicate a sys-
tematic difference between DLPFC versus left DMFC group-level
SNR (Dz ¼ �0:01; p ¼ 0:60). However, the SNRs in these
regions were also not confirmably similar, as indicated by an
equivalence test (which provides a confirmatory test of the null
hypothesis; p=0.10). Therefore, while we cannot rule out the
possibility that the single dissociation observed between left
DMFC and DLPFC was driven by better group-level SNR in
DMFC, any potential SNR differences between the two regions
were not substantial enough for our methods to detect.

Fourth, to provide a basis for comparison to most extant neu-
roimaging research of the Stroop task, we conducted a “univari-
ate activation” analysis, examining whether these brain regions
were generally more active during incongruent versus congruent
conditions. No regions were found to respond more strongly
overall to incongruent versus congruent conditions (Extended
Data Fig. 2-3A), although the mean contrast in DMFC (L) was
positive (i.e., incongruent.congruent). This null result was not
surprising, however, because of the high frequency of incongru-
ent trials within the experiment — which is known to reduce
both the behavioral and neural univariate Stroop effect (Logan
and Zbrodoff, 1979; Carter et al., 2000; De Pisapia and Braver,
2006). While this null result demonstrates the utility of using
RSA in this case, it should not, however, be seen as direct evi-
dence for the increased sensitivity of RSA versus univariate
methods, as the univariate and RSA-based tests as implemented
here are subject to different constraints and are thus incompara-
ble (Allefeld et al., 2016). Finally, the magnitude of the univariate
Stroop effects was only weakly correlated to incongruency coding
model fits (Extended Data Fig. 2-3B), suggesting that these meas-
ures were nonredundant.

Finally, we tested whether these patterns of results were ro-
bust to alternative RSA techniques, including a downsampling
technique to equate trial counts across runs, two “between-run”
RSA methods (cross-run RSA and cross-validated RSA), and al-
ternative parameterizations of the incongruency coding model
(see Materials and Methods). Findings were robust to downsam-
pling and to between-run RSA (Extended Data Fig. 2-4), and
were highly similar across different parameterizations (Extended
Data Fig. 2-5). Interestingly, however, the detection of incongru-
ency coding in DMFC depended on whether a linear or nonlin-
ear RSA method was used. When using an RSA method that
tests linear discriminability between conditions (cross-validated
RSA), the incongruency coding effect was abolished in DMFC;
whereas when using a comparable method that is sensitive to
nonlinear pattern differences (cross-run RSA), the effect
remained quite strong. This pattern of results suggests that
incongruency information was encoded nonlinearly within
DMFC activation patterns. Indeed, this can be seen within the

two-dimensional embedding (Fig. 2), as a radial, rather than lin-
ear, separation of incongruent (central) and congruent (periph-
eral) stimuli.

Individual
Primary individual-level results are summarized in Figure 3.
Statistical estimates corresponding to results outlined within this
section are contained in Table 2 (for scatter plots of all associa-
tions, see Extended Data Fig. 3-1).

Better-performing subjects have stronger lateral frontoparietal
target coding
The fidelity of target-related information in lateral frontoparietal
cortex — DLPFC, in particular — is thought to be closely linked
to the efficiency with which an individual resolves response con-
flict in tasks such as Stroop. By using subject-level target-coding
estimates (b target) to model behavioral performance (RT), we
tested this fundamental prediction relatively directly. Indeed,
subjects with stronger target coding in both right DLPFC
and right LPPC resolved Stroop interference effects more quic-
kly (DLPFC: b ¼ �239:13; p ¼ 0:00; r ¼ �0:44 ½�0:66;�0:15�;
r ¼ �0:39 ½�0:63;�0:08�; LPPC: b ¼ �235:34; p ¼ 0:00; r ¼
�0:44 ½�0:63;�0:17�; r ¼ �0:35 ½�0:59;�0:06�; p values cor-
rected across hemisphere; linear correlation, r; rank correlation,
r ; bootstrapped 95% CI, ½lower; upper�; Fig. 3A; Table 2).
Subjects’ target coding estimates were moderately correlated
(r=0.53) between these two lateral frontoparietal regions, as
expected based on their strong neuroanatomical and functional
connectivity (e.g., Petrides and Pandya, 1999; Buschman and
Miller, 2007). In neither of these lateral regions was incongru-
ency coding significantly related to the Stroop interference eff-
ect (DLPFC: b ¼ 38:42; p ¼ 0:25; r ¼ �0:17 ½�0:14; 0:45�; r ¼
�0:10 ½�0:19; 0:37�; LPPC b ¼ �32:40; p ¼ 0:31; r ¼ �0:15

Table 2. Parameter estimates from hierarchical brain–behavior models that
explained individual differences in behavioral performance (RT) with variability
in the strength of neural coding (b, see Method)a

Contrast b s t p

DMFC (L) incon.c 47.66 25.97 1.84 0.06647
DMFC (R) incon. �0.10 33.15 0.00 0.99762
DMFC (L) target 48.40 90.63 0.53 0.59330
DMFC (R) target �24.04 63.75 �0.38 0.70613
DLPFC (L) incon. 14.08 41.17 0.34 0.73227
DLPFC (R) incon. 38.42 33.66 1.14 0.25367
DLPFC (L) target �105.93 78.34 �1.35 0.17637
DLPFC (R) targetb �239.13 71.68 �3.34 0.00085
LPPC (L) incon. �48.95 38.13 �1.28 0.19921
LPPC (R) incon. �32.40 32.22 �1.01 0.31467
LPPC (L) target �1.90 93.65 �0.02 0.98385
LPPC (R) targetb �235.34 71.23 �3.30 0.00096
incon:�target j DMFC ðLÞ 20.92 97.23 0.22 0.82962
incon:�target j DLPFC ðRÞb 299.21 80.62 3.71 0.00021
incon:�target j LPPC ðRÞb 204.56 79.94 2.56 0.01050
DMFC ðLÞ � DLPFC ðRÞ j incon: 22.85 52.92 0.43 0.66587
DMFC ðLÞ � DLPFC ðRÞ j targetb 500.63 139.14 3.60 0.00032
DMFC ðLÞ � LPPC ðRÞ j incon:b 134.19 49.85 2.69 0.00710
DMFC ðLÞ � LPPC ðRÞ j targetb 468.99 137.46 3.41 0.00065
a Separate models were fit per region and RSA model (target, incongruency) combination. The displayed esti-
mates correspond to the interaction stroop � b , which indicates how subjects’ coding strengths relate to
the magnitude of their Stroop interference effects. Also displayed are contrasts on stroop � b estimates,
between RSA models (within ROI) or between ROIs (within RSA model). For example,
target� incon: j DLPFC ðRÞ indicates, for right DLPFC, whether target and incongruency coding were differ-
entially related to the size of the Stroop interference effect.
b Contrasts with p, 0.05.
c Contrasts with 0:05,p,0:1.
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½�0:40; 0:13�; r ¼ �0:18 ½�0:45; 0:12�; p values uncorrected),
and within right DLPFC, target coding was a considerably
stronger explanatory variable than incongruency coding
(Db ¼ �299:21; p ¼ 0:00; Table 2).

Conversely, incongruency-related responses of DMFC are
thought to be positively associated with maladaptive policies
of response selection. In line with this notion, subjects with
stronger incongruency coding in left DMFC tended to exhibit
greater Stroop interference, although this interaction was
nonsignificant (b ¼ 47:66; p ¼ 0:13; r ¼ �0:26 ½�0:01; 0:49�;
r ¼ �0:17 ½�0:12; 0:44�; p value corrected across hemisphere;
Fig. 3A). Similarly, incongruency coding was numerically
more strongly associated with Stroop interference effects than
target coding in this region, although this statistical difference
was also nonsignificant (Db = –20.92, p = 0.83; Table 2). While
weak, this DMFC–Stroop association notably emerged within
the same hemisphere that displayed a group-level preference
for incongruency information (Fig. 2B). Importantly, the sign
of the correlations we detected within our ROIs were robust to
alternative RSA techniques (Extended Data Fig. 3-2; general
attenuation in effect size is expected with higher variance
techniques; see Downsampling analysis and Between-run
RSA).

Considering the collective pattern of results, we conclude
here that our findings support the hypothesis that target coding
in (right) DLPFC and in LPPC reflected a common process of
implementing control.

Model selection affirms a lateral–medial dissociation and identi-
fies unexpected relationships
Because the preceding hypothesis-driven analysis exclusively
focused on a limited set of regions, important brain–behavior rela-
tionships may have been missed. A more accurate model may even
omit target and incongruency coding from DLPFC, DMFC, and
LPPC altogether. Consequently, we conducted a more comprehen-
sive test to identify regions and task dimensions that could better
account for Stroop performance variability across individuals.

A data-driven model selection analysis was conducted to
address this question (see Materials and Methods). We defined

an expanded set of 24 cortical regions (superparcels), including
the six defined and used earlier, which covered various areas that
may be important for performing the Stroop task (Fig. 2B;
Extended Data Fig. 3-3). Conducting RSA on each superparcel
furnished three coding estimates (one per coding model) per
superparcel. These 72 estimates were then used as features in a
cross-validated model selection procedure.

Strikingly, the selected model contained all three hypothe-
sized measures: (right) DLPFC and LPPC target coding, and
(left) DMFC incongruency coding. In addition, two unexpected
measures were identified, both with negative slopes: left DLPFC
distractor coding (r ¼ �0:43 ½�0:66;�0:14�; r ¼ �0:33 ½�0:60;
�0:04�) and left ventral visual incongruency coding (r ¼
�0:35 ½�0:52;�0:13�; r ¼ �0:43 ½�0:62;�0:20�; bivariate cor-
relations shown in Fig. 3C). We tested the predictive accuracy of
the selected model by using a held-out validation set of 17 subjects
(co-twins of the primary analysis set). The selected model
explained significant variance in Stroop interference effects within
the validation set (Fig. 3D). While not fully independent, these val-
idation set data were from a true hold-out and obtained from dis-
tinct individuals. This result therefore bolsters claims regarding
the stability of the selected model.

Nevertheless, to provide a cursory test of a truly independent
validation set (i.e., with no familial dependency to the training
set), we excluded all subjects in the training set who were co-
twins of with those in the validation set, and reconducted this
model selection procedure. This amounted to discarding 16/49
(33%) of training-set observations. The selected model contained
only one variable, which was not in our ROIs (but in early visual
cortex), and was unable to predict held-out Stroop effects (r =
�0.12). This is perhaps unsurprising, however, given the sub-
stantial reduction in the size of the training dataset for an already
high-dimensional model. To reduce the dimensionality, we
reconducted this analysis, focusing now instead only on ROIs
and coding schemes of interest — target coding in DLPFC and
LPPC, and incongruency coding in DMFC (within each hemi-
sphere) — and additionally ensured that all variables were used
in prediction (via ridge regression). This model was better able
to predict the held-out Stroop effect (r=0.20), in particular,

Figure 4. Cortical distributions of target (top), incongruency (middle), and distractor (bottom) coding, identified via an exploratory, whole-cortex analysis. Color bar represents test statistic
from one-sided sign-ranked test. For all statistical estimates, see Extended Data Figures 4-1, 4-2, and 4-3. Sensitivity and robustness analyses suggested that the core results were robust to var-
ious analysis decisions and implementations (handling of head motion, see Results; parameterization of incongruency coding, Extended Data Figure 2-5B; RSA estimation method, Extended
Data Figure 4-4).
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relative to a comparable model that contained theoretically “mis-
matched” ROI�coding scheme combinations (incongruency
coding in DLPFC and LPPC, target coding in DMFC; r = �0.17;
bootstrapped p=0.088).

Results from these model selection analyses affirm a func-
tional dissociation across the medial–lateral axis of frontoparietal
cortex, and further demonstrate that Stroop-task representations
within DLPFC and DMFC hold relatively privileged relation-
ships with behavior

Exploratory whole-cortex RSA
In a final, exploratory analysis, we estimated RSA models sepa-
rately for each MMP parcel, to determine more comprehensively
how target, distractor, and incongruency coding are distributed
across cortex. These three task dimensions were encoded across
cortex according to different neuroanatomical profiles. Target
coding was widespread (observed in 207/360 parcels), covering
substantial portions of the frontal and temporal lobes, including
many perisylvian regions (Fig. 4, top; Extended Data Fig. 4-1).
Notably, the strongest target coding was observed within regions
that receive strong sensory and (or) motor-related input
(Extended Data Fig. 4-1). Contrastingly, incongruency coding was
detected predominantly within prefrontal and intraparietal sulcal
parcels — including DMFC, but also left LPPC, bilateral superior
frontal gyrus, and left lateral frontopolar cortex (rostral DLPFC)
— but additionally within left retrosplenial and right lateral occipi-
tal cortex (Fig. 4, middle; Extended Data Fig. 4-3). Aside from this
occipital area, these incongruency-coding parcels notably
belonged to control networks (frontoparietal, cinguloopercular,
and dorsal attention; Extended Data Fig. 4-3). In a third, distinct
profile, distractor coding was only observed within early visual
cortex (left V1 and V2; Fig. 4, bottom; Extended Data Fig. 4-2).

As a negative control analysis, we tested whether we could
decode these three task variables (target, distractor, incongruency)
from framewise head motion estimates, using the same RSA proce-
dures as above. No task variable was significantly encoded within
patterns of head movements (bs, 0:01; ps. 0:36). Using a larger
basis set of motion estimates (12 vs 6) did not yield significant
decoding (bs, 0:01; ps. 0:17), nor any increased sensitivity to
task variables (bs, 0:00; ps. 0:17), suggesting that our motion
removal procedures (scrubbing and 6 motion regressors) were
adequate.

Finally, we repeated this exploratory analysis using alternative
RSA methods involving downsampling and between-run RSA
(see Downsampling analysis, and Between-run RSA; Extended
Data Fig. 4-4). Across these analyses, the core results were quite
robust: we found incongruency coding in parcels within DMFC
(though this depended on the use of nonlinear RSA methods, as
in Extended Data Figs. 2-4, 3-2), target coding in mid-DLPFC,
and distractor coding in visual cortex. Our findings were there-
fore not specific to a particular estimation method.

Collectively, these exploratory results confirm and extend our
prior findings. (1) As with the reported brain–behavior associa-
tions, target coding was emphasized relative to coding of other task
dimensions. (2) Yet despite this emphasis, important and expected
dissociations in anatomic profiles were identified across our three
coding models, further suggesting that these models were success-
ful in measuring coding of distinct task dimensions (Fig. 1A).

Discussion
We analyzed the similarity structure, or representational geome-
try (Kriegeskorte and Kievit, 2013), of frontoparietal activity

patterns associated with cognitive control, during performance
of the classic color-word Stroop task. In left DMFC, incongru-
ency coding predominated. While DLPFC and LPPC encoded
both target and incongruency-related information, distractor cod-
ing was not detected in these regions but was instead identified in
early visual cortex. Further, these neural coding estimates were im-
portant and specific indicators of individual differences in magni-
tude of the behavioral Stroop interference effect. Individuals with
stronger target coding in right DLPFC and right LPPC, but weaker
incongruency coding in left DMFC, exhibited enhanced cognitive
control, in terms of a reduced Stroop effect. Further, in a more com-
prehensive predictive model that included coding measures from a
wide set of cortical regions, coding measures specifically from lateral
frontoparietal and dorsomedial frontal regions were privileged in
their link to behavior.

On one level, this study is a specific extension of research that
has drawn dissociations between control-related functions of
DLPFC and DMFC (MacDonald et al., 2000; Floden et al., 2011).
Most prominently, MacDonald et al. (2000) used a modified
Stroop-task design, in which task rules (delivered via precues)
randomly alternated between color naming and word reading
across trials, to demonstrate that DLPFC and DMFC encoded
different types of information during cognitive control engage-
ment. In particular, DLPFC was selectively recruited following
cues for the more demanding color-naming task, whereas
DMFC was instead driven by incongruent color-naming trials.
This pattern of recruitment suggested that DLFPC encodes task-
set and rule-related information in a preparatory manner,
whereas DMFC encodes incongruency and conflict-related infor-
mation in a stimulus-evoked manner. In the current study, we
leveraged the high spatial dimensionality of fMRI to test whether
this functional dissociation can be observed within a common
time window of response selection, and further with a more tra-
ditional Stroop-task design, which does not involve task cues or
switches. Our findings reinforce the conclusions of these rela-
tively low-powered studies (N= 12 in Floden et al., 2011; N=9 in
MacDonald et al., 2000) and indicate that the dissociations were
not dependent on the use of cued task-switching designs.
Synthesizing these prior findings with those of the present study
hints at a continuity in the putative role of DLPFC during target
selection. Rather than exclusively contributing to preparation,
DLPFC coding may evolve from proactively representing
abstract rule or set-related information, toward more concrete
targets and behavioral choices as relevant stimulus information
becomes available in the environment. This view accords with
work in monkey neurophysiology (Mante et al., 2013; Rigotti et
al., 2013; Stokes et al., 2013), yet further work is needed to deter-
mine whether similar dynamics occur within human DLPFC
and how such dynamics may reflect or interact with specific
processes of cognitive control in Stroop-like tasks.

More broadly, the results of this study highlight the utility of
RSA and the general representational geometric framework for
investigating cognitive control. Previous work has used MVPA
decoding in the Stroop task to study the impact of control demand
on posterior representations (e.g., Banich et al., 2019). Here, we
used the RSA framework to explicitly model and decompose con-
trol-related frontoparietal representations. Indeed, a major motiva-
tion of the current study was to assess how well RSA measures
of frontoparietal coding map to theorized mechanisms of control.
For this purpose, the medial–lateral functional dissociation in fron-
toparietal cortex was a useful test-bed, as it features in several theo-
retical accounts (Botvinick et al.,2001; Miller and Cohen, 2001;
Ridderinkhof et al., 2004; Shenhav et al., 2013). Our results were
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generally in line with these accounts, joining with
a growing body of research in suggesting that
RSA provides a convenient yet powerful frame-
work from which neural measures can be used to
test cognitive control theory (for review, see
Freund et al., 2021).

Nevertheless, the current work represents
only an initial step in using the RSA framework
to investigate cognitive control within Stroop-
like tasks. As such, our study raises a number of
unaddressed questions. But promisingly, there
are ample opportunities for improving and
extending the RSA framework highlighted here.
For instance, a key limitation of the current
study was the finding of widespread coding of
the target dimension, suggesting a lack of speci-
ficity in the target RSA model. This is perhaps
not surprising, however, as the model would
capture not only coding of attentional-template
and choice-related information, but also hue
and response-related information. We miti-
gated this issue by demonstrating that target
coding was selectively related to behavior
within DLPFC and LPPC. Yet, this limitation
could be addressed more powerfully by experi-
mental design. Adding specific factorial manip-
ulations, such as a task rule manipulation (see
MacDonald et al., 2000; Hall-McMaster et al.,
2019) or a response modality manipulation (see
Minxha et al., 2020; see also Barch et al., 2001),
would enable a richer, more precise set of cog-
nitive control-relevant coding variables to be
estimated (Fig. 5).

Future work could also address some of the
complexities revealed by our data that were not
entirely accounted for by the theoretical frame-
works we used. For one, although predicted
coding profiles emerged in some frontoparietal
ROIs, all regions encoded incongruency and
target information. This incongruency-coding
finding is consistent with prior univariate fMRI
research (e.g., Nee et al., 2007; Niendam et al.,
2012) and a more recent finding that the
responses of single neurons in human dACC
and DLPFC are robustly modulated by conflict (Smith et al.,
2019). With respect to target coding, however, one speculative
interpretation is that, during the relatively late phase of response
selection and execution, control networks may lose modular
structure as the circuitry collectively converges on a behavioral
choice. This interpretation accords with the fact that “choice
axes” are encoded within multiple key nodes of frontoparietal de-
cision circuitry, for example: in macaque LIP (Roitman and
Shadlen, 2002), in macaque caudal DLPFC (Mante et al., 2013),
and in human dACC and pre-SMA (Minxha et al., 2020; see also
Okazawa et al., 2021). This account could be addressed using the
enriched experimental design described above, identifying when
and where choice coding is emphasized over the course of a trial.

Another unexpected finding was a relatively robust negative
relationship between the strength of incongruency coding in left
ventral visual cortex and the magnitude of the Stroop effect (Fig.
3B, left). One interpretation of this finding is provided by the bi-
ased competition framework, as an effect of selective visual atten-
tion. Prior work has demonstrated that certain ventral visual

regions, those that are strongly tuned to target features, activate
as a function of Stroop incongruency (Egner and Hirsch, 2005).
In our task, mid-ventral stream areas may have received biasing
input, selectively on incongruent trials, which enhanced stimu-
lus-related
coding and communication with downstream regions. Using the
expanded RSA design sketched above, we might expect that such
an effect would be limited to color naming conditions, when
selective attention processes would be most prominent.

Perhaps the most surprising result was the robust negative
correlation observed between left DLPFC distractor coding and
the behavioral Stroop effect (Fig. 3B, right). At face, accounting
for this finding within the framework of top-down biased com-
petition is difficult. But, given the statistics of our task in which
incongruent trials were frequent and congruent were rare, dis-
tractor information could have been used to facilitate perform-
ance. An association between distractor features and
incongruency could have been learned and used to influence
response selection, for example, by retrieving and implementing
a stimulus-appropriate attentional setting (Melara and Algom,
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Figure 5. Expanded experimental designs. The current target coding model (top, green text; see also Fig. 1) con-
flates distinct coding schemes, including those associated with relatively “early” vision, relatively “late” motoric com-
mands, or more “central” rule-dependent schemes. By adding a factorial manipulation of task rule (i.e., participants
respond to the present set of stimuli, but under both color-naming and word-reading conditions; MacDonald et al.,
2000; light purple arrows and text), the target coding model can be expanded into three more precise models (mid-
dle row of matrices), which are identical to our “target coding” model within the top-left quadrant (green square;
naming–naming), but are now distinguished among the other quadrants (reading–reading, reading–naming).
“Stimulus hue” and “response” models would identify coding that depends on features of either the stimulus or
response, independent of the task rules. Conversely, “target features” would identify a more flexible “attentional
template” coding scheme, which depends critically on the current task goals (bottom right quadrant resembles our
“distractor” coding model in Fig. 1, as word features become the target in the word-reading condition). Importantly,
too, abstract coding of task rule would also now be distinguishable (“rule” matrix on left). For an elegant example
of a similar design within cued-task switching, see Hall-McMaster et al. (2019). The “response” model could be fur-
ther elaborated by incorporating another manipulation of response modality (verbal, manual; orange arrows). Now,
coding of abstract choice options, independent of effector, could be separated from effector-dependent motoric cod-
ing. For an elegant example of a similar manipulation, see Minxha et al. (2020).
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2003; Bugg and Crump, 2012). Indeed, subjects clearly do exploit
these associations, as indicated by reduced Stroop effects for
stimuli that are “mostly incongruent,” also known as “item-spe-
cific proportion congruency” effects (ISPC; Bugg et al., 2011;
Jiang et al., 2015; see also Crump and Milliken, 2009). The pre-
diction that distractor coding might reflect ISPC effects could be
tested by varying ISPC levels across different stimuli. For stimuli
in which the specific color or word is not predictive of congru-
ency, the relationship between DLPFC distractor coding and
improved Stroop performance should not be present.

Finally, the present study sets the stage for using RSA to test
the dual-mechanisms framework of cognitive control (Braver,
2012). This framework explains much within- and between-indi-
vidual variability in cognitive control function by the existence of
two operational “modes” of cognitive control: proactive and re-
active. These modes are proposed to have dissociable signature
neural coding schemes. Proactive control should rely heavily on
goal-relevant coding schemes that originate in LPFC before tar-
get-stimulus onset as abstract rule or context coding, but which
may morph into target coding after stimulus onset. In contrast,
reactive control should rely on an incongruency-based coding
scheme (including coding of whichever task dimensions are pre-
dictive of incongruency), originating post-target onset, with
potential loci in DMFC or subcortical structures (Jiang et al.,
2015; Chiu et al., 2017). As suggested here, it may be possible to
measure correlates of these neural coding schemes via RSA.
Experimental factors that encourage subjects to adopt one mode
over another (e.g., strategy training, expectancy of difficulty)
should correspondingly shift frontoparietal coding schemes
along these proactive and reactive dimensions. Further, their be-
havioral relevance should predictably change, as well: for exam-
ple, in task contexts in which a proactive control mode is
theoretically maladaptive, subjects with stronger proactive
coding should perform worse. Thus, the dual-mechanisms
framework suggests a broad range of hypotheses amenable
to testing with RSA methods (see, e.g., Hall-McMaster et
al., 2019). Such hypotheses can be addressed in the broader
Dual Mechanisms of Cognitive Control dataset (Braver et
al., 2020), of which the data used here are a small subset.
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